

SmartCHP final conference Cogenerating a renewable future The role of small-scale bioCHP in Europe's Energy mix

BLAZE & SO-FREE projects

Enrico Bocci
University Guglielmo Marconi (USGM)

CHP IN EU-28 (Eurostat)

- 120 GWe (ST 50%, CC 25%, ICE 13%, GT 10%): 362 TWh -> ≈ 3000 AEh (≈ 11% of electricity demand).
- 300 GWth: 775 TWh -> ≈ 2500 AEh
- <u>space</u> heating ≈ 50% <u>process</u> heating (Germany, Italy, Poland and the Netherlands largest capacity)
- Natural gas ≈ 50%, solid fossil fuels and peat ≈ 20%, oil and oil products 5%, biomass (timber by-products, black liquor, wood, straw, animal waste, OFMSW) attained 20% but there is difficulty in converting different biomass feedstocks in a Reliable and Economic (Efficient and Clean) way
- Zero Energy Buildings (ZEB&ZED) from 31st December 2020 (public buildings from 31st December 2018)

CHP SoA & BLAZE foreseen goals

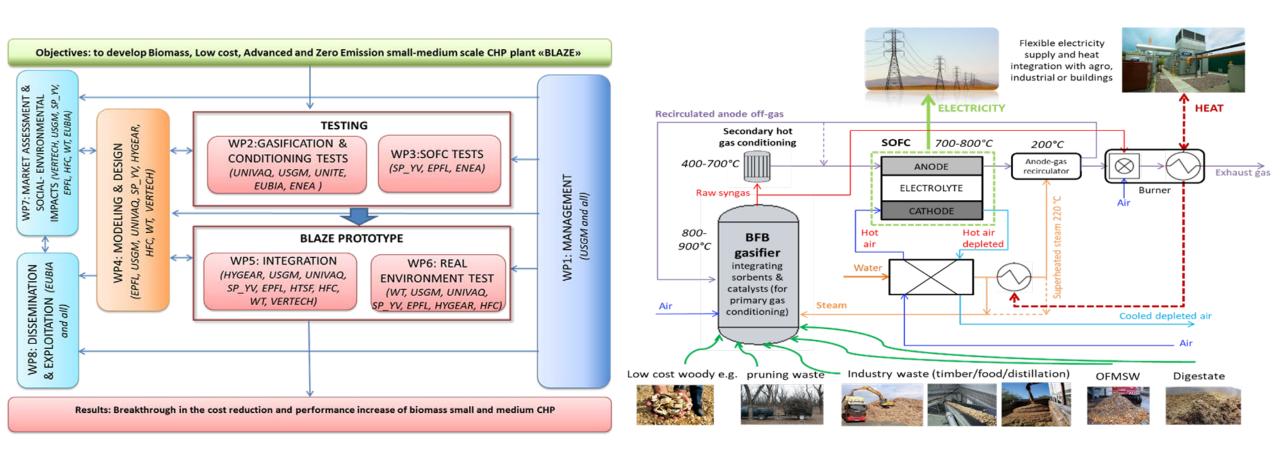
Below 1 MWe systems mainly applied:

- 1. Biomass combustor coupled to organic rankine cycle (ORC)
- 2. Biomass fixed bed gasifier coupled to internal combustion engine (ICE)

BLAZE 100 (100 kWth biomass DBFBG integrated with 50 kWe SOFC) is compared to a 100 kWth biomass combustor coupled to a 15 kWe ORC and a 100 kWth biomass fixed bed gasifier coupled to a 25 kWe ICE

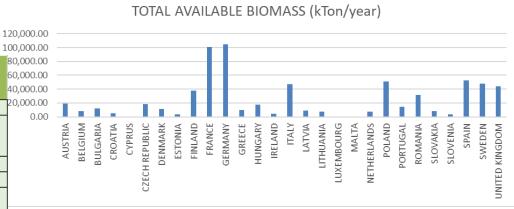
Cost of a gas boiler with burner, flue tubes and accessories is added to the CHP plants cost. To this item, heating civil works, piping, pump, expansion vessel and regulation system have been added.

Buildings heat price: <u>0.06 €/kWht (AEh: 3000 electrical and 2500 thermal</u>) Industrial heat price: <u>0.04 €/kWht (AEH: 7500 electrical and thermal</u>).


Biomass price: <u>60 €/ton</u> (similar to the price of high humidity wood chips for BLAZE) <u>100 €/ton</u> (similar to the price of low humidity wood chips for ORC and ICE systems).

BLAZE: overall <u>90% (versus 65%, target SET-PLAN 75%)</u>, electrical <u>50% (versus 25%, target SET-PLAN >30%)</u>, near-zero gaseous and PM emissions, <u>CAPEX below 4,000 €/kWe</u> (actual 10,000 €/kWe), <u>OPEX of ≈ 0.05 €/kWhe</u> (actual 0.10 €/kWhe), electricity production cost <u>0.10 €/kWh</u> (actual 0.22 €/kWh, SET-PLAN target of 20% cost reduction by 2020, and 50% by 2030).

BLAZE OBJECTIVES & SCHEME



WP2: BIOMASS ASSESSMENT, GASIFICATION AND

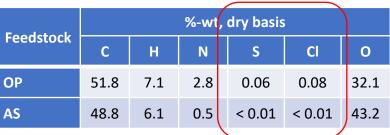
CON	DIT		
CON	ווט	IUIV	IIIVG

							1
Feedstock	CATEGORY	Humidity (%- wt, as received)	LHV MJ/kg	Ash ‰t, dry basis	S %wt, dry basis	Cl %wt, dry basis	Ash melting T (DT) (°C)
Subcoal	Municipal waste	3,20	21,68	15,60	0,10	1,00	1250,00
Olive pomace pitted	Secondary residues of industry utilising agricultural products	36,30	19,79	5,95	0,06	0,08	1290,00
Sawmill waste	Primary residues from forest	11,20	18,89	0,41	<0.01	<0.01	1300,00
Multi-essence wood chips	Waste from wood	24,50	17,88	1,45	0,02	<0,01	1370,00
Olive Prunings	Secondary residues from wood industries	14,90	17,76	1,55	<0.01	<0.01	1380,00
Almond shells	Secondary residues of industry utilising agricultural products	10,00	17,68	1,31	<0.01	<0.01	1000,00
Swarf and sawdust	Secondary residues from wood industries	6,60	17,14	0,43	<0.01	<0.01	>1385
Wood chips	Primary residues from forest	8,90	16,74	0,54	<0.01	<0.01	>1385
Corn cobs	Agricultura l residues	9,00	16,62	3,04	0,03	0,44	645,00
Arundo Donax	Agricultura l residues	10,10	16,25	3,43	0,11	0,29	1185,00
1- Wheat Straw (pellets 10 mm)	Agricultura l residues	7,60	15,98	9,22	0,05	0,12	1065,00
2- Wheat Straw (pellets 6 mm)	Agricultural residues	7,60	15,40	13,29	0,08	0,21	1135,00
Rice husks	Secondary residues of industry utilising agricultural products	5,20	15,19	14,70	0,02	0,03	990,00
Digestate	Digestate from biogas production	71,20	12,69	25,81	0,97	0,10	1245,00
Black Liquor	Secondary residues from wood industries	20,60	11,20	48,28	0,74	0,12	680,00
Municipal solid waste	Municipal waste	23,00	10,22	47,01	0,20	0,40	1220,00

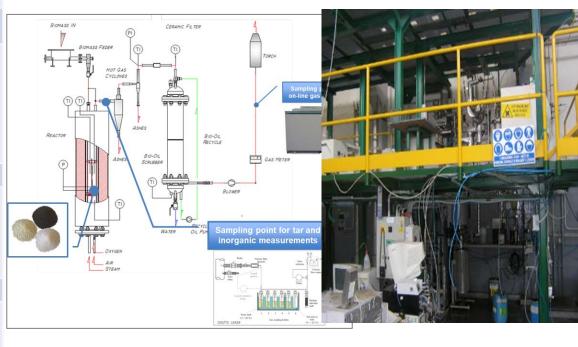
CATEGORY	potential (Kton dry mass/y)
Agricultural residues	264986,32
Primary residues from forest	167641,91
Municipal waste	89763,53
Secondary residues from wood industries	87906,47
Secondary residues of industry utilising agricultural	
products	29527,11
Waste from wood	26418,22
Digestate from biogas production	12634,60

CATEGORY	cost €/ton
Waste from wood	15
Agricultural residues	28
Primary residues from forest	35
Secondary residues from wood industries	35
Secondary residues of industry utilising agricultural	
products	55
Municipal waste	60
Digestate from biogas production	661

BLOVE; WP2: BIOMASS ASSESSMENT, GASIFICATION AND **CONDITIONING**



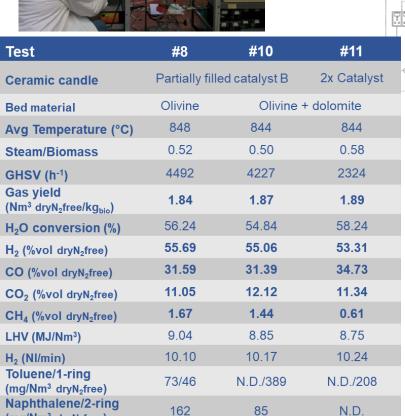
Olive pomace



- > Bed material (i.e. olivine, calcined dolomite)
- > In-bed sorbents (i.e. calcined dolomite, Na2CO3, K2CO3)

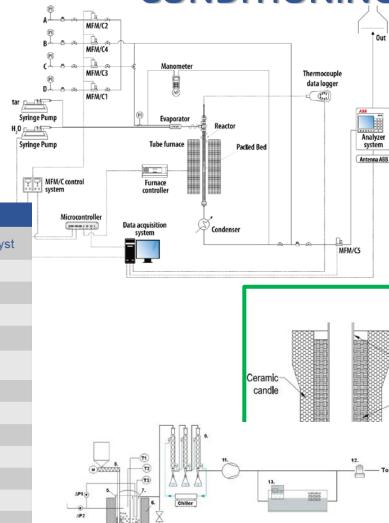
In had implementation	Observed Effect						
In-bed implementation	Olive Pomace	Almond shells					
Primary additives							
Na ₂ CO ₃ , K ₂ CO ₃ : x 100 stoich.	1- Reduction of HCl content around \approx 10-100 mg/Nm $^3_{dry}$ vs 510 mg/Nm $^3_{dry}$ (theoretical value).	1- Reduction of HCl content < 20 mg/Nm ³ _{dry} vs 55 mg/Nm ³ _{dry} (theoretical value)					
c-Dolomite (0-45 %-wt)	1- Appreciable effect on gas composition (H2 enrichment, from 25 %-v up to 35 %-v, N2-free); 2- Important effect on Tar content reduction (%-eff: > 45%-wt on Tot GCMS: 25 g/Nm³ _{dry} vs 13.7 g/Nm³ _{dry} ; Benzene, Toluene, Naphthalene ≈ 1000s mg/Nm³ _{dry}); 3- H ₂ S content reduced to tens/few mg/Nm³ _{dry} (vs 320 mg/Nm³ _{dry} (theoretical value);	1- No appreciable effect on gas composition (H2 content ~ 35 %-v, N2-free); 2- Important effect on Tar content reduction (%-eff: > 50%-wt on Tot GCMS: 28 g/Nm³ _{dry} vs 10 g/Nm³ _{dry} ; Benzene, Toluene, Naphthalene ≈ 1000s mg/Nm³ _{dry}) 3- H₂S content reduced to tens/few mg/Nm³ _{dry} vs 27 mg/Nm³ _{dry} (theoretical value);					
Steam/Biomass (OLV)							
0.5 vs 1.0	1- H_2 enrichment (H_2 : 25 \rightarrow 35 %-v, N2-free basis); 2- limited reduction on light hydroc. content (i.e. $CH_4 + C_2H_x$); 3- lower effect on the reduction of tar content 25 g/Nm ³ _{dry} (\sim 30% based on Tot GCMS);	1- H_2 enrichment (H_2 : 35 \rightarrow 45 %, N2-free basis); 2- No effect evidence on light hydroc. content (i.e. $CH_4 + C_2H_\chi$); 3- lower effect on the reduction of tar content 28 g/Nm ³ _{dry} vs 19 g/Nm ³ _{dry} (\sim 30% based on Tot GCMS);					
Equivalence Ratio							
0.25 vs 0.30	1- Minimal effect on gas composition (CO2 %-v increase);2- Limited effect in the tar content (~ 15-20%-wt on Tot GCMS);	1- Minimal effect on gas composition (CO2 %-v increase);2- Limited effect in the tar content (~ 15%-wt on Tot GCMS);					

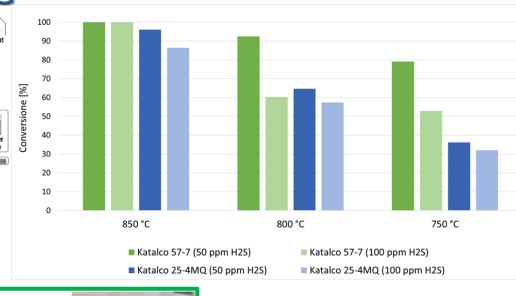
(mg/Nm³ dryN₂free) Total Tar (w/o benz)

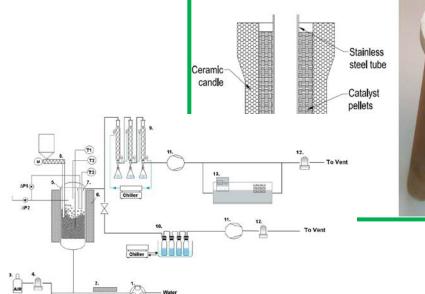

(mg/Nm3 dryN2free)

WP2: BIOMASS ASSESSMENT, GASIFICATION AND

CONDITIONING

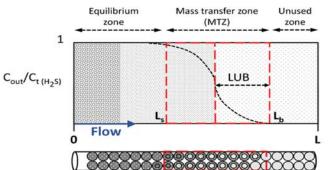


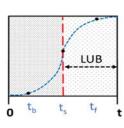



342

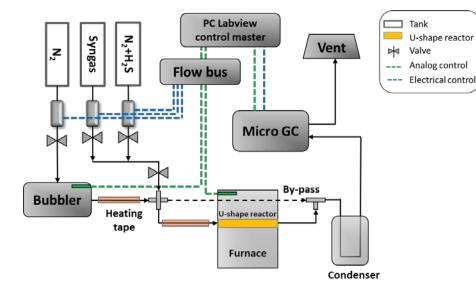
474

208




WP2: BIOMASS ASSESSMENT, GASIFICATION AND

CONDITIONING


Experimental Conditions	1	II .				
Gas flow	Syng	;as*				
Sorbent (g)	0.5–0.25					
T (°C)	450–600					
P (bar)	0.95–1.05					
GHSV (10 ³ h ⁻¹)	25–50					
\mathcal{C}_{H_2S} (ppmv)	400	260				
BL (cm)	0.8-	1.5				
Bed L/D index	1–1.9					
Particle size (mm)	1.5–3.0					
Total flow (NmL min ⁻¹)	305	± 1				

Paper published in
Energies journal : E.
Ciro, A. Dell'Era, A.
Hatunoglu, L. Del Zotto,
E. Bocci
Kinetic and
Thermodynamic Study of
the Wet Desulfurization
Reaction of ZnO
Sorbents at High
Temperatures

- ZnO sorbents showed the best performances of absorption capacity of the at 550
 °C, achieving a sorption
 capacity of 5.4 g per 100 g of sorbent and a breakthrough time of 2.7 h.
- These materials also have been shown acceptable results up to 600 °C.
- A water-gas shift (WGS) and a catalytic reactions was observed on the ZnO performance.
- From thermodynamic analysis, the endothermic features for the deactivation reaction was observed and thermodynamic calculations for enthalpy, entropy, activation energy and diffusion coefficient were calculated.
- The modelling of the bed fixed reactor and subsequent estimations of bed reactor were carried out to sizing the dimensions of a fixed bed reactor.

0.7

0.6

20

BLADE WP3: SOLID OXIDE FUEL CELLS (SOFC) TESTS

Napthalene

High

15

85

120

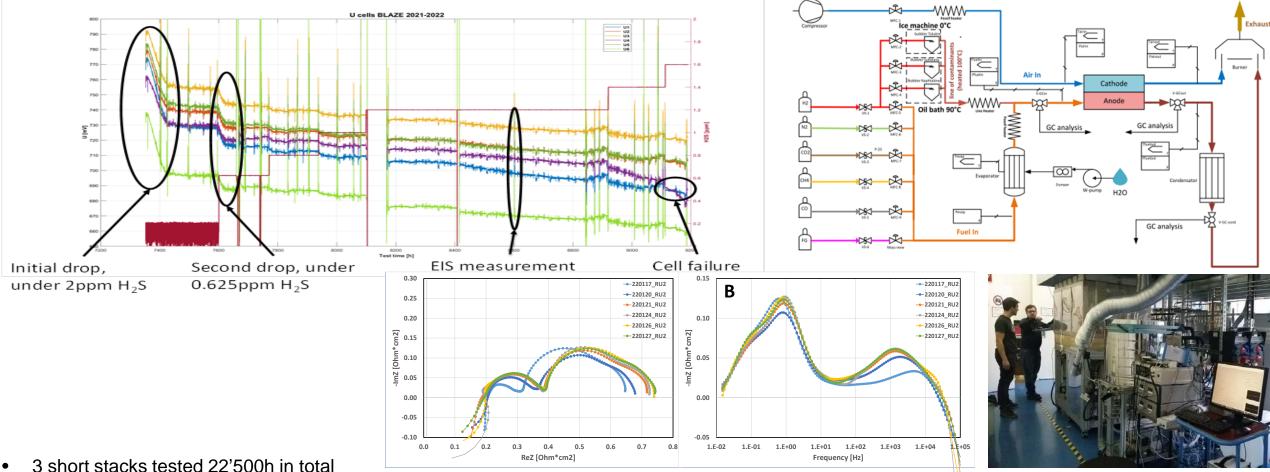
Contaminant thresholds	н	₂ S		ng tar luene	2-rir Naptł	g tar nalen
	Low	High	Low	High	Low	Н
ppm(v)	1	3	60	180	5	
mg/Nm3 (dry)	-	-	250	750	25	
0.030 H2S 3 ppm 0h @ 0.5 Acm ² H2S 3ppm 48h @ 0.5 Acm ² H2S 3ppm 120h @ 0.5 Acm ²	P ₂	0.7		—— long term	H ₂ S 3ppm naphthalend	e 15ppm
0.00	100 1000 10000	0 m H ₂ S 1ppm Tol 60ppm	20 n Napht 5ppm	• T	everal tests we yngas-fed SOFC he multi-conta ontaminant (H	minan 2S mai

60

t (h)

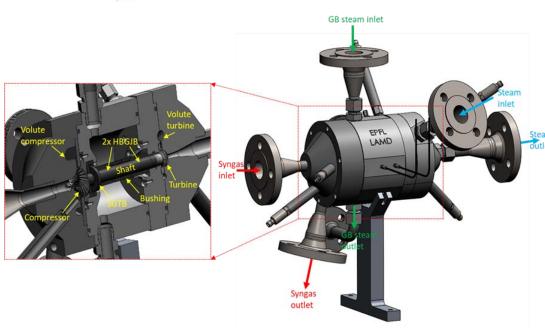
80

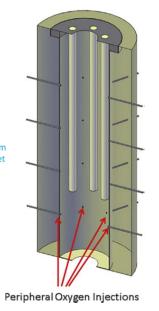
100

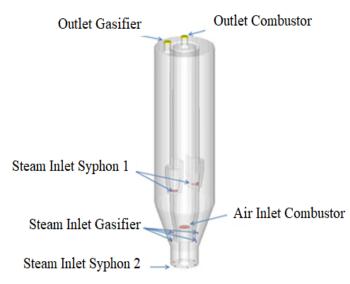

120

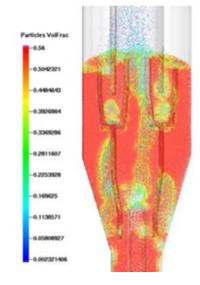
- tests were performed to analyse single and multi-contaminant impact on -fed SOFC
- Ilti-contaminant tests generally confirm the results obtained from the singleninant (H2S mainly affecting charge transfer; tars affecting R0 and diffusion o charge transfer)
- R0 mobility was observed for the tar-laden syngas compositions, possibly due to Cdep which induces a dynamic effect on RO
- Tar presence (in smaller concentrations and with cells with higher initial voltage) seem to mitigate the H2S poisoning (possibly due to a concomitant activity of Ni for tar reforming). This is however not observed for all samples, being related to H2S/Tar ratio and Tar typology

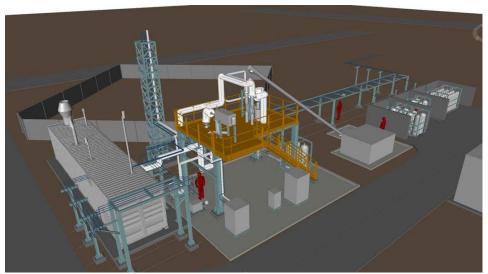
BLADE WP3: SOLID OXIDE FUEL CELLS (SOFC) TESTS

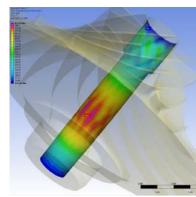


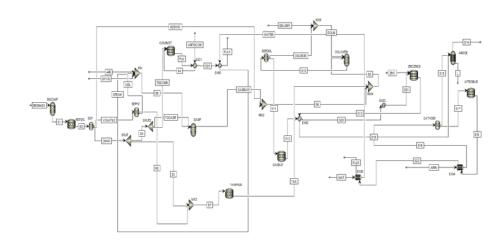

- 3700h of impurities exposure Sulfur (DMS): $0.2 \rightarrow 4$ ppm Light tar (Toluene): $20 \rightarrow 400$ ppm Halogen (HCl): $5 \rightarrow 50$ ppm
- EIS under nominal polarization DRT analysis
- stable operation in clean syngas (9000h) -3.4 µV/h (-0.4%/kh)
- S deactivates Ni starting from 0.2ppm (30ppb) Affects CT and RWGS 9% voltage drop at 4ppm Co-feed of toluene mitigates S-contamination Partial recovery (logarithmic) 50% in 33h 80% in 250h
- HCl leads to irreversible degradation (-60 µV/h) for 5-50ppm

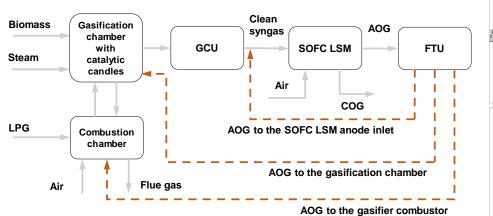


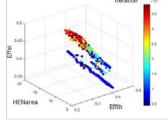

WP4: MODELING AND PILOT DESIGN

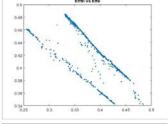


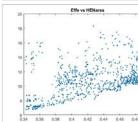








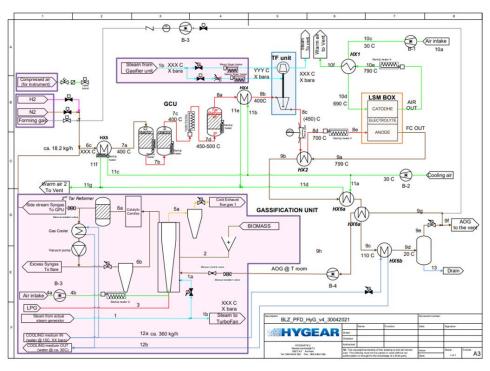


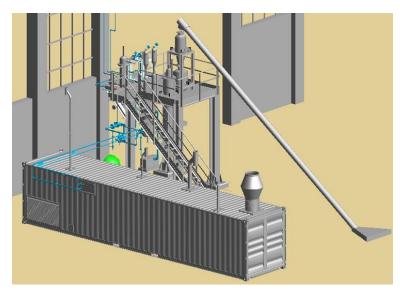

WP4: MODELING AND PILOT DESIGN

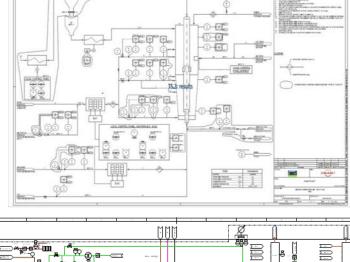
20 -			Effe	vs HE	Varea		
-	- 35				- 100	40	87
18							
16							
14 :	2		٠.		À.,		
12		. 15	A.	1	100		À
10		34	***	·×	1/2	374	118
2 2	185	See		7			

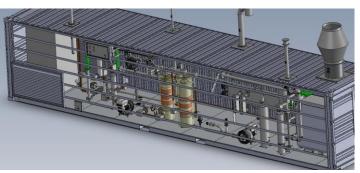
	Acc to the gashier combastor			025 03 035 04 045 0.5		6 0.34 0.36
	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
Gross power SOFC (kW)	25	25	25	25	25	25
Gross power turbine (kW)						8.973
Air compressor (gasifier) (kW)	0.291	0.363	0.316	0.327	0.226	0.292
Air compressor (SOFC) (kW)	0.663	0.746	0.611	0.663	0.663	0.663
AOG compressor (kW)	0	0.098	0.123	0.129	0	1.361^{1}
Pumps (kW) ²	6.00E-05	3.24E-03	6.12E-04	6.00E-05	6.00E-05	1.00E-03
Net power (kW)	24.046	23.788	23.947	23.877	24.106	31.656
CGE	0.73	0.75	0.68	0.68	0.75	0.73
SOFC efficiency	0.50	0.47	0.50	0.50	0.50	0.50
Eff _{el}	0.34	0.37	0.39	0.38	0.44	0.45
Cooling water produced (kg/h)	189.68	213.61	174.52	189.68	189.68	189.68
Cooling water produced (kW)	9.51	10.72	8.75	9.51	9.51	9.51
Cold utility (kW)	6.23	8.06	18.75	18.35	4.72	17.41
Eff _{th}	0.22	0.28	0.45	0.45	0.25	0.38
Total efficiency (Eff _{el} + Eff _{th})	0.57	0.65	0.83	0.83	0.69	0.84
FTU						
ΔP (mbar)		250	60		270	
Steam needed (kg/h)		19.85	3.75		10.19/16.50	
Inlet fan T (°C)		200	200		20/200	
Total power needed from turbine (kW)		0.315	0.060		0.162/0.209	

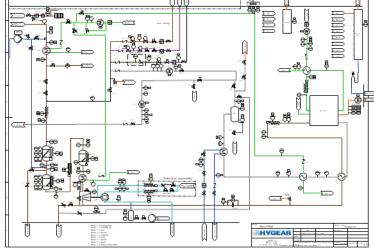
Name	Description
Case 1	Base case; BLAZE plant without AOG use.
Case 2	AOG recirculation to the gasification chamber.
Case 3	AOG recirculation to the SOFC LSM anode inlet.
Case 4	AOG recirculation to the gasifier combustor without FTU.
Case 5	AOG recirculation to the gasifier combustor with FTU.
Case 6	AOG used in a GT.


Variable / criterion	Distance utopian	Eff _{el}	Eff _{th}	HEN area
FU	0.780	0.800	0.715	0.746
STB	0.333	0.330	0.967	0.330
Tgasif (°C)	782.475	751.173	837.502	839.452
TinSOFC (°C)	690.000	690.391	697.473	690.022
TC2 (°C)	28.705	25.873	26.207	186.869
TH1 (°C)	550.054	745.798	132.408	101.537
TH6S (°C)	321.274	398.596	356.899	221.770
TC1 (°C)	279.412	200.000	236.054	428.615
TH2 (°C)	642.955	550.967	634.334	626.737
TH3 (°C)	508.714	756.581	245.333	263.241
Eff _{el}	0.4547	0.4873	0.3443	0.3493
Eff _{th} *	0.3558	0.3052	0.4736	0.4093
Eff _{tot}	0.8105	0.7925	0.8179	0.7587
Area (m²)	9.980	11.543	13.614	6.727
Steam generated (kg/h)	14.606	10.027	29.977	26.360
Cooling water produced (kg/h)	155.826	153.954	190.537	161.233
Steam to gasifier (kg/h)	3.261	3.158	10.696	3.371
LPG (kg/h)	0.173	0.000	0.902	1.196
Recirculation compressor (kW) @ TC2	0.122	0.115	0.153	0.360
Steam needed in the FTU (kg/h) @ TC2	9.63	9.13	12.10	28.05
Steam needed in the FTU (kg/h) @ 200 °C	15.11	14.35	19.05	1

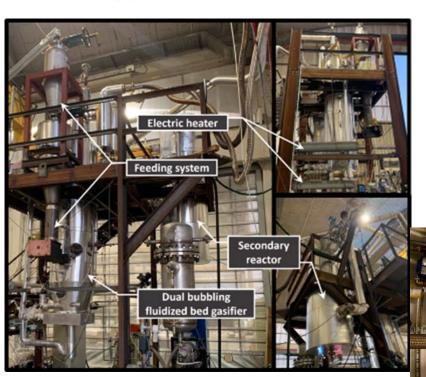



WP5 INTEGRATION

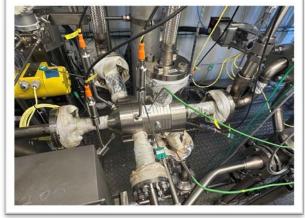

Overall CHP pilot system: Gasification unit + CHP sub-units

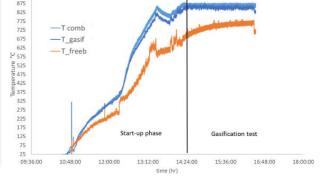


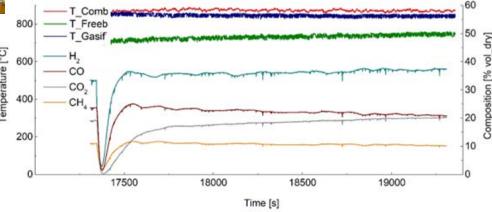
- Doubla Bubbling Gasifier/Combustor
- Gas cleaning unit (GCU)
- Turbo-fan/steam driven compressor (TF)
- 25 kWe Large Stack Module (LSM)
- Anode off gas post-processing section BoP, PID, HAZID, HAZOP done!

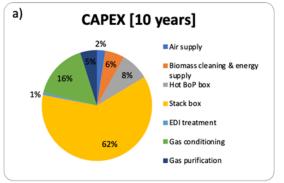


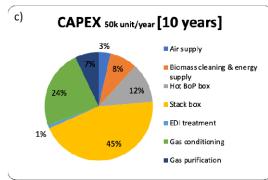
WP6 REAL ENVIRONMENT TEST

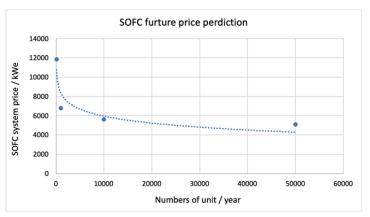




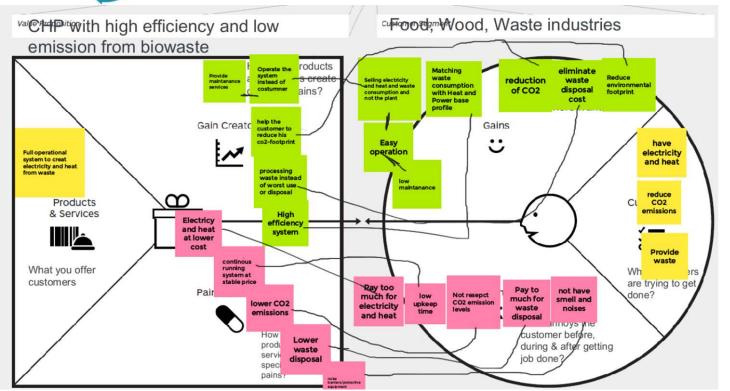








WP7: TECHNO-ECONOMIC, SOCIAL AND ENVIRONMENTAL ASSESSMENT


kg CO2 eq				system	Sy	stem	data	d on base	for BLAZE
		0.77		0.32738	0.3	3863	0.32	901	0.19498
PDF.m2.yr		0.14441	1	-2.41656	-2.4	1444	-2.41	1358	-2.45441
DALY		1.96E-07	7	2.57E-07	2.7	7E-07	2.43	E-07	3.49E-07
m3 world-eq		0.04115 0.01948		-0.0	-0.00355 0.02		266	0.01825	
kg CFC-11 e	eq	1.83E-0	7	5.76E-08	6.0	1E-08	5.81	E-08	9.33E-09
25 kW	50 kW	100 kW	500 k1	W 1 MW	5 MW		MW with 10 years stack lifetime		ith 10 years stack uture price+2 years naintanence
		o allocation -	Do not o	consider co-gene	ration featu				
0.390736	0.270921	0.249180	A CONTRACTOR OF STREET		0.195363	0.10	4556		0.104556
	Witt	economic all			neration fe	ture	-		0.094361
	3710	. soononiio an		THE RESIDENCE AND ADDRESS OF THE PARTY OF TH	and action 100				
0.259105	0.179653	0.165236			0.129549	0.00	9333		0.069333
		-10							0.062573
0.004620	0.050070	0.050000			0.042242	0.00	2040		0.022646
0.084629	0.058078	0.053969			0.042313	0.02	2040		0.022646
	DALY m3 world-e kg CFC-11 e	DALY m3 world-eq kg CFC-11 eq 25 kW 50 kW 0.390736 0.270921 With 0.259105 0.179653	DALY 1.96E-0 m3 world-eq 0.04115 kg CFC-11 eq 1.83E-0 25 kW 50 kW 100 kW No allocation 0.390736 0.270921 0.249180 With economic al	DALY 1.96E-07 m3 world-eq 0.04115 kg CFC-11 eq 1.83E-07 25 kW 50 kW 100 kW 500 k No allocation - Do not of the conomic allocation With economic allocation 0.259105 0.179653 0.165236 0.1436 Head 0.084629 0.058678 0.053969 0.0536	DALY 1.96E-07 2.57E-07 m3 world-eq 0.04115 0.01948 kg CFC-11 eq 1.83E-07 5.76E-08 25 kW 50 kW 100 kW 500 kW 1 MW No allocation - Do not consider co-gene 0.390736 0.270921 0.249180 0.216878 0.20923 0.144339 With economic allocation - Consider co-gene Electricity production 0.259105 0.179653 0.165236 0.143816 0.138076 0.095714 Heat production	DALY 1.96E-07 2.57E-07 2.7 m3 world-eq 0.04115 0.01948 -0.0 kg CFC-11 eq 1.83E-07 5.76E-08 6.0 25 kW 50 kW 100 kW 500 kW 1 MW 5 MW No allocation - Do not consider co-generation feature 0.390736 0.270921 0.249180 0.216878 0.208223 0.195363 0.144339 With economic allocation - Consider co-generation feature Electricity production 0.259105 0.179653 0.165236 0.143616 0.138076 0.129549 0.095714 Heat production 0.084629 0.058678 0.053969 0.063969 0.045098 0.042313	DALY 1.96E-07 2.57E-07 2.77E-07 m3 world-eq 0.04115 0.01948 -0.00355 kg CFC-11 eq 1.83E-07 5.76E-08 6.01E-08 25 kW 50 kW 100 kW 500 kW 1 MW 5 MW 1 MW with stack No allocation - Do not consider co-generation feature 0.390736 0.270921 0.249180 0.216878 0.208223 0.195363 0.10 0.144339 With economic allocation - Consider co-generation feature Electricity production 0.259105 0.179653 0.165236 0.143816 0.138076 0.129549 0.06 0.095714 Heat production 0.084629 0.058678 0.053969 0.053969 0.045098 0.042313 0.06	DALY 1.96E-07 2.57E-07 2.77E-07 2.43 m3 world-eq 0.04115 0.01948 -0.00355 0.02 kg CFC-11 eq 1.83E-07 5.76E-08 6.01E-08 5.81 25 kW 50 kW 100 kW 500 kW 1 MW 5 MW 1 MW with 10 years stack lifetime No allocation - Do not consider co-generation feature 0.390736 0.270921 0.249180 0.216878 0.209223 0.195363 0.104556 0.144339 With economic allocation - Consider co-generation feature Electricity production 0.259105 0.179853 0.165236 0.143816 0.138076 0.129549 0.069333 0.095714 Heat production 0.084629 0.058678 0.053969 0.053969 0.045098 0.042313 0.022646	DALY 1.96E-07 2.57E-07 2.77E-07 2.43E-07 m3 world-eq 0.04115 0.01948 -0.00355 0.02266 kg CFC-11 eq 1.83E-07 5.76E-08 6.01E-08 5.81E-08 25 kW 50 kW 100 kW 500 kW 1 MW 5 MW 1 MW with 10 years stack lifetime in m No allocation - Do not consider co-generation feature 0.390736 0.270921 0.249180 0.216878 0.208223 0.195363 0.104556 0.144339 With economic allocation - Consider co-generation feature Electricity production 0.259105 0.179653 0.165236 0.143816 0.138076 0.129549 0.069333 0.095714 Heat production 0.084629 0.058678 0.053969 0.053969 0.045098 0.042313 0.022646

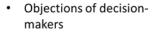
- ✓ BLAZE pilot plant 0.31 kg CO2 eq, 50 % reduction compared with mature electricity generation technology. After reasonable improvement, BLAZE emits 0.19 kg CO2 eq. (better heat integration, self-produced **steam**, biofuel instead of **LPG**, renewable electricity, **catalyst** production and lifetime)
- ➤ Biomass and maintenance contribute the most in OPEX. Electricity contributes 66% of overall revenues. Economic allocation method is important and necessary to use. BLAZE system has the potential to reach 0.1 Euro/ 1 kWh electricity, 0.04 Euro/ 1 kWh heat (cheaper than the market price), reach BLAZE proposed target. BLAZE shows more competitivity marketplace when the plant size is big, and it can deliver heat and electricity continuously (CHP).

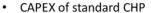
WP8: Dissemination and Exploitation

Strengths

- · CHP is energy efficient
- Storage
- Blaze has good Bio CHP characteristics
- Smaller size

Weaknesses


- Complex plant (leading also to higher CAPEX and O&M costs)
- Limited no. of operational hours leading reliability
- · Biomass supply



Opportunities

- Global energy crisis
- Local autonomy is trendy
- Reduction of CO2 and emissions
- Climate change increasingly actual

Threats

Business Case Wood Forniture Industry: Heat Demand 5.500 MWh/year, Electricity Demand 9.000 MWh/year Sawdust waste-biomass 5.500ton/year 20.000 MWh/year

	CASE 1		CASE 2		CASE 3		CASE 4	
Investment	€	11,135,616.03	€	8,814,258.58	€	6,254,416.20	€	11,135,616.03
Cash Flow (Year 1)	€	1,919,304.22	€	1,913,212.58	€	1,567,033.89	€	2,074,064.22
LSM cost replacement @y10	€	7,950,000.00	€	6,000,000.00	€	3,900,000.00	€	7,950,000.00
IRR (Internal Rate of Return)		0.09		0.15		0.19		0.11
NPV - Net Present Value	€	20,957,466.77	€	22,072,590.67	€	18,701,478.17	€	23,040,878.45

Technology roadmap: Reduce the plant and single equipment costs, Optimize the overall plant cost defining a modular standard size, Cumulate operational manhours for increasing reliability and availability, LSM costs drive the economics (LSM 4.000 €/kWe 5 years lifetime).

Business Model: ESCO Model seems to be a viable solution for medium scale plants and in general for customers like industries

Designing for flexible use of hydrogen and natural gas: the SO-FREE project

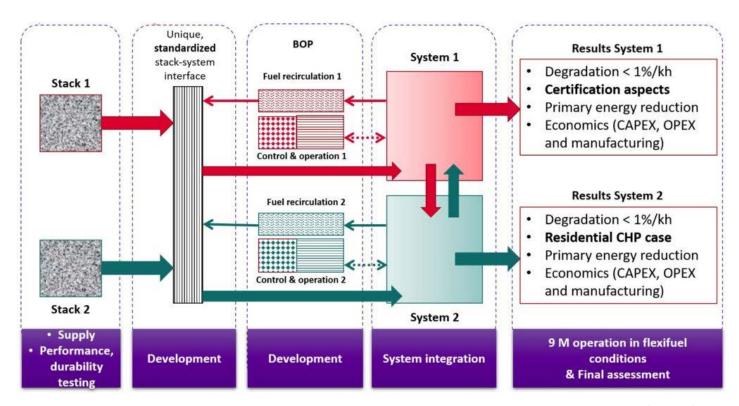
- Demonstration of a fully fuel-flexible, 5 kW CHP system
- Start 1 January 2021. End 30 March 2025. Budget: 2.7M€
- Stacksuppliers: Elcogen (ASC, 650°C), Fraunhofer IKTS (ESC, 850°C)
- CHP System developers: AVL, ICI
- CHP prototypes manufacturer: ICI
- Stacktest labs: ENEA, IEN
- Demosites: KIWA, IEN (>6000 h)
- Pre-certification of the systems: KIWA
- Assessments SOFC-CHP NL, IT, PL, UK markets: PGE,
 KIWA, USGM, ENEA

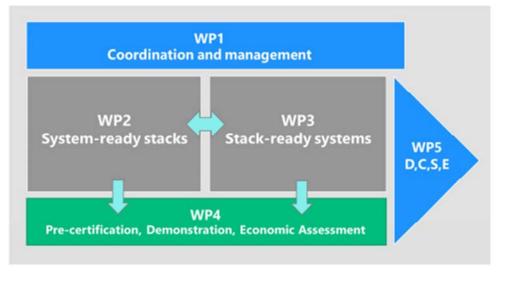
 This project has

Main goals

- Broader Fuel Operation Window
- Pre-certified SOFC-CHP system allowing an operation window from zero to 100% H2 in natural gas and with additions of purified biogas.

- Stack-system Interface Standardization
- Standardization of the stack module system interface, allowing full interchangeability of SOFC stack types within a given SOFC-CHP system, by the International Electrotechnical Commission (IEC) as a new work item proposal (NWIP).


- System Demonstration and Certification
- Two stack system interoperability run for 9 months in order to assess compliance with all applicable certification requirements of a TRL 6 prototype and demonstration in operational environment providing combined heat and power with natural gas with injections of hydrogen at TRL7.



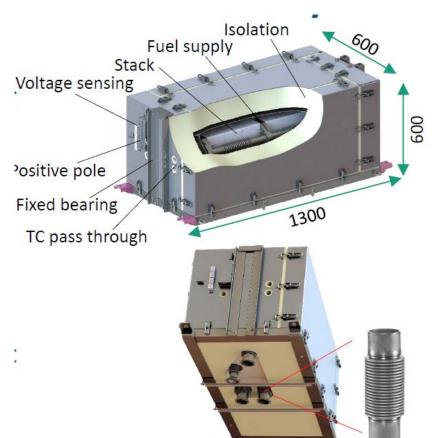
Activities

SO-FREE results: stack characterization

- Developed a unique testing interface for validation in 2 labs
- Testing under 100% H2/CH4 & 67:33
- IV curves, Fuel utilization curves, Temperature sensitivity
- ±0,88%average difference between2test labs on all measurements (all < 4%)

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (JU) under grant agreement No 101006667.

The JU receives support from the European Union's Horizon 2020 research and innovation programme and Italy, Austria, Finland, Germany, Poland, Netherlands, United Kingdom

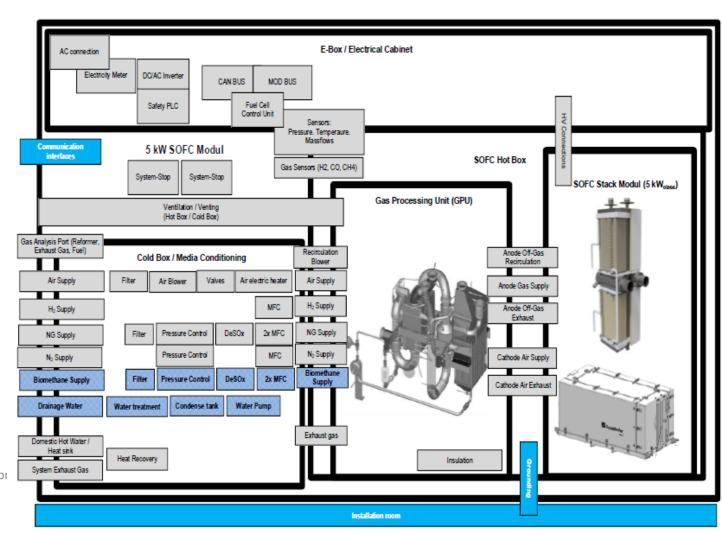


SO-FREE results: stack module-system interface

- Unique module to house both ASC & ESC stack, in flexifuel operation
- Allows quick module replacement during system operation
- Design finalized for SO-FREE

Power connection via terminal blocks

Cluster terminal interface for voltage (package) sensing



SO-FREE results: system prototypes

- Developped 2 different systems for crossdemonstration of stacks and systems at 2 locations
- Unique manufacturer for both systems
- Pre-assessment for CE certification
- 9-month demo at TRL 6(pre-certification) and at TRL7 (quasi-residential)
- System requirements frozen, P&IDs finalized of both systems, RFQs for components out, 3D design complete
- Manufacturing Q1 2024, 9-month Demo 2024-25
- Techno-economic assessment of 5-kW CHP system in 4 markets: NL, PL, UK, IT validated with demo performance data
- LCA assessment. Stakeholder workshop at a demolocation –stay tuned!

GICO project

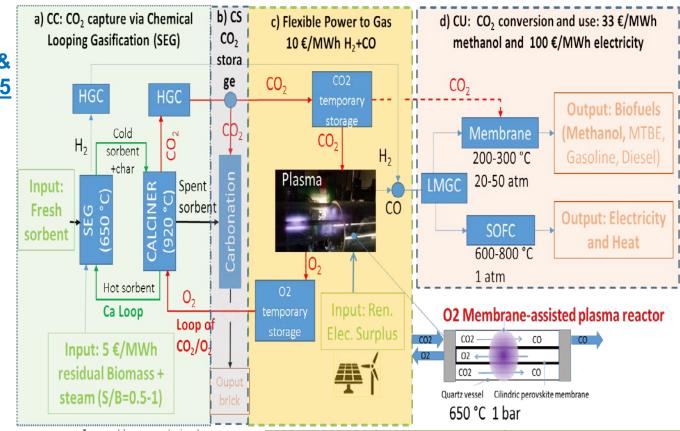
WASTE price -33÷100 €MWh

(-100÷300 €/t, LHV_{wet} 11 MJ/kg=3 MWh/t, **D2.1 BLAZE &** D2.1 GICO: Intermediate solid bioenergy carriers: 15-5 **€MWh** SET plan-GICO)

Legislation gaps for the agroindustrialmunicipal coproducts/waste use for H&P&CCUS&Fuel Market gaps for solid bioenergy carries (e.g. biochar for Fuel is not as pellet for Heat)

Gasification -> 5-2 €/MWh (1-0.3 k€/MW_{th}, 10% opex) **Conditioning** -> 5-2 €/MWh (1-0.3 k€/MW_{th}, 10% opex) **CO**₂ capture 90€t (GICO 40€/t), 50%C_{wt}&50%CO2, 5-2

€MWh


CO₂ convers.->CO+½O2, 10€/MWh_e, 50% efficiency, **5 €**MWh

(Intermediate gaseous bioenergy carriers: 30–10 €MWh SET plan-GICO)

Gap in legislation for gaseous bioenergy carries Market gaps (e.g. biosyngas is not as H2 in NG grid)

Methanol/biofuel 75 SET plan 35 GICO €MWh Bioelectricity 200 actual 100 GICO €MWh (SOFC<1000€kWe?)

Difficulty in use especially in mix and medium to small scale (i.e. 2-20 t/day and 500-5,000 kWe, compatible with the standard residual organic waste availability of few thousand tons per year) connected to communities. see public D6.4 GICO deliverable.

	REFERENCE MARKET Market Size		KER	Market	Trend		
			Hydro-Thermal	Biomass gasification	\$91.3 billion in - \$105.7 billion by 2028		
	Biomass ⁱ	\$91.3 billion in - \$105.7 billion	Carbonization (HTC)		CAGR of 3.0 % from 2023 to 2028		
		by 2028	Sorption Enhanced	Cement & Steel mill	Cement market: 340.61 billion in 2022 -		
	Syngas ⁱⁱ	\$ 48.89 billion in 2022 - \$73.71 billion by 2030	Gasifier (SEG) ^v		\$481.73 billion by 2029. CAGR of 5.1% in 2022-2029 Iron and steel market: \$1,538.72 billio in 2021. CAGR of 5.1% from 2022 to 2030. \$49.25 billion in 2021 - \$76.7 billion by 2030. CAGR 9.3% between 2022 and 2030.		
	Hydrogen ⁱⁱⁱ	\$27012 1 Billion III 2025	Hot gas filtration and conditioning (HGC) ^{vi}	Catalytic converter			
(Carbon capture, storage, and utilization CCSU ^{iv}	\$1.9 billion in 2020- \$7.0 billion by 2030	Membranes for oxygen separation (MOS) ^{vii}	Gas separation membrane	\$1,856.78 million in 2023 - \$2,469.59 million by 2028. CAGR of 5.87% during 2023-2028.		

2023-2028.

University Guglielmo Marconi (USGM)

Enrico Bocci

E-mail: e.bocci@unimarconi.it

www.so-free.eu www.blazeproject.eu